2007 RHIC & AGS Annual Users' Meeting

June 18-22, 2007 at Brookhaven National Laboratory

Booster Accelerator

Alternating Gradient Synchrotron

Theoretical Overview

Probing the Nucleon's Spin Structure with Longitudinally Polarized Beams

Marco Stratmann

main objective with long, polarization

- we want to understand the nucleon's spin budget in terms of
 - total spin polarizations $\int \Delta f(x,\mu) dx$
 - · orbital angular momenta
 - of quarks and gluons
- to achieve this goal we have to extract the fully x-dependent helicity parton densities $\Delta f(x, \mu)$ from experiment

- important test of QCD: understanding of hadron structure
 - hard scattering QCD dynamics
 - factorization & universality

standard tool: polarized DIS

more than 25 years of beautiful data on polarized DIS – still progress!

in 2006/07:

- final DIS results from HERMES
- · deuteron results from COMPASS

NLO QCD analysis of polarized DIS

find: very good agreement with data at NLO level

acronyms:

AAC: Asymmetry Analysis Collaboration

(Hirai, Kumano, Saito)

BB: Blümlein & Böttcher

GRSV: Glück, Reya, MS, Vogelsang

salient features:

- quark contr. to S_z^p = 1/2: $\Delta\Sigma \simeq 0.2 \div 0.3$
- gluon largely unconstrained due to limited (x,Q^2) coverage \rightarrow eRHIC!

while waiting for a first polarized ep-collider

 Δg can be further constrained

in pp-collisions at RHIC...

milestone of RHIC spin program

(as far as possible) a model independent determination of

Collins, Soper; Manohar

$$\Delta g(x,\mu) = \frac{1}{4\pi x P^+} \int dy^- e^{iy^- x P^+} \langle P, S | F_a^{+j}(0,y^-,\vec{0}) \mathcal{F} \tilde{F}_{+j}(0) | P, S \rangle \Big|_{\mu}$$
gauge link

features:

interpretation as diff. of number operators only in $A^{+}=0$ gauge

$$\left| \begin{array}{c} P, + \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} P, + \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ \end{array} \right|^{2} X \left| \begin{array}{c} 2 \\ \longrightarrow \\ X \left| \begin{array}{c} 2 \\$$

- all $n \ge 2$ moments, $\int x^{n-1} \dots dx$, give local operators but there is no gauge-invariant local gluonic operator for n=1
- in $A^{+}=0$ gauge the 1^{s+} moment also collapses into a local operator and has the interpretation as gluon contribution to the spin "sum rule"

lacktriangle data probing Δg are rolling in now \dots

pp: PHENIX, STAR

p: HERMES, COMPASS, SMC

- What do they imply?
- How to analyze them properly?
- Potential problems & limitations?

hunting down the elusive Δg

outline:

- theoretical framework
- extracting Δg : results & complications

the general strategy is simple ...

... but it is an intricate problem:

recall

$$\frac{d\sigma^{pp\to\pi X}}{dp_T d\eta} = \sum_{abc} \int dx_a dx_b dz_c f_a(x_a, \mu_f) f_b(x_b, \mu_f) D_c^{\pi}(z_c, \mu_f')
\times \frac{d\hat{\sigma}^{ab\to cX'}}{dp_T d\eta} (x_a P_a, x_b P_b, P^{\pi}/z_c, \mu_f, \mu_f', \mu_r) + \mathcal{O}(\frac{\lambda}{p_T})^n$$

- information on long-distance physics inside complicated convolutions & summed over many partonic subprocesses
 - no 1:1 correspondence between data and parton densities or frag. fcts.
 - information on momentum fractions "smeared" over significant range

ex.: pp $\rightarrow \pi X$ at p_T = 2.5 GeV

theoretical calculations depend on unphysical scales

• a measurable cross section d(Δ) σ has to be independent of μ_r and μ_f

- if we truncate the series after the first N terms, there will be a residual scale dependence of order (N+1) \rightarrow theory error
- there is no such thing like "the right scale" (not even μ =Q in DIS)

the harder we work, the less the final result should depend on these artificial scales

a powerful gauge of the reliability of a pQCD calculation

example: single-jet production at RHIC

taken from B. Jäger, MS, W. Vogelsang

going beyond the LO is a must for any quantitative study

going beyond the LO is in every aspect a major enterprise

$$d\hat{\sigma} = d\hat{\sigma}^{(0)} + \alpha_s d\hat{\sigma}^{(1)} + \alpha_s^2 d\hat{\sigma}^{(2)} + \dots$$

$$\frac{\text{number of final-state partons}}{\text{complexity of calculation}}$$

$$\frac{\text{rough}}{\text{estimate}}$$

$$\frac{\text{start of precision physics}}{\text{start of precision physics}}$$

... pushes math. tools & computer algebra to their limits

tremendous progress on NLO calculations for RHIC-spin

available:

hadrons

jets

photons

heavy flavors

Drell Yan

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$ [61, 62]	$ec{g}ec{g} o gg \ ec{q}ec{g} o qg$	Δg	3,000 %
$ \vec{p}\vec{p} \to \text{jet(s)} + X [71, 72] $	$ec{g}ec{g} o gg\ ec{q}ec{g} o qg$	Δg	(as above)
$ \begin{aligned} \vec{p}\vec{p} &\to \gamma + X \\ \vec{p}\vec{p} &\to \gamma + \text{jet} + X \\ \vec{p}\vec{p} &\to \gamma\gamma + X \end{aligned} $	$egin{aligned} ec{q}ec{g} & ightarrow \gamma q \ ec{q}ec{g} & ightarrow \gamma q \end{aligned} \ ec{q}ec{q} & ightarrow \gamma \gamma \end{aligned}$	$ \begin{array}{c c} \Delta g \\ \Delta g \\ \Delta q, \Delta \bar{q} \end{array} $	**************************************
[67, 73, 74, 75, 76]			<u> </u>
$\vec{p}\vec{p} \to DX, BX$ [77]	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	3,000<
$\vec{p}\vec{p} \to \mu^{+}\mu^{-}X$ (Drell-Yan) [78, 79, 80]	$\vec{q}\vec{q} \to \gamma^* \to \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	>~<
$ \vec{p}\vec{p} \to (Z^0, W^{\pm})X $ $p\vec{p} \to (Z^0, W^{\pm})X $ [78]	$ \vec{q} \vec{q} \to Z^0, \ \vec{q}' \vec{q} \to W^{\pm} $ $ \vec{q}' \vec{q} \to W^{\pm}, \ q' \vec{q} \to W^{\pm} $	$\Delta q, \Delta \bar{q}$	>

Jäger, Schäfer, MS, Vogelsang; de Florian

Jäger,MS,Vogelsang; Signer et al.

Gordon, Vogelsang; Contogouris et al.; Gordon, Coriano

Bojak, MS

Weber; Gehrmann; Kamal; Smith et al.

work in progress: particle-correlations for RHIC (hadron_hadron, hadron-photon, heavy-flavor)

Jäger, Owens, MS, Vogelsang; Riedl, MS

strength of RHIC: unpolarized "benchmarks"

pQCD challenged by experiment

find (jets, pions, photons, ...)

perfect agreement over many orders of magnitude

foundation/baseline for:

- polarized pp collisions at RHIC
- interpretation of heavy-ion results

much less clear at fixed-target exp.

what do RHIC data already tell us?

current probes at RHIC: single-inclusive hadrons & jets PHENIX, STAR at moderate p_T and mid-rapidity η

relevance of different subprocesses:

indeed ...

spin asymmetry

A_{LL}

Versus

single-incl. A_{LL} vs. NLO calc. for very diff. gluon polarizations Δg

major result: very large (\gtrsim 2 units of \hbar) "anomaly-inspired" Δg dead

but beyond that ??

experiments now do their own theory analysis ...

Q: how robust are these results?

[heavily biased by GRSV framework?; x-range?; 1st moment?; ...]

data \(\operatorum x\)-range probed

can we figure out which $\langle x \rangle$ is probed?

difficult!

a closer look for GRSV "standard"

estimates of $x\pm dx$ very difficult w/o knowing Δg

→ important disclaimer

RHIC data so far are sensitive to a rather limited x-range $0.04 \le x \le 0.2$

 \rightarrow full moment $\int_0^1 dx \, \Delta g(x,\mu)$ still a long shot (i.e., depends on assumed shape for Δg)

[also Gehrmann-Stirling gluons pick up a large small-x contribution!!]

other issues to worry about ...

how do quarks & gluons hadronize?

key phenomenological input for all calculations of meson/baryon production

plenty of experimental information but we know much less about hadronization than about hadron structure - why?

many short-comings of available models revealed by RHIC data, e.g.:

NLO calc.: Jäger, Schäfer, MS, Vogelsang

- general trend: "Kretzer" below data (STAR, PHENIX, BRAHMS)
- no reliable charge/flavor separation (STAR, BRAHMS: π^+ vs. π^- yields, ...)

we must do better!

1st global analysis of ete- and ep, pp data

de Florian, Sassot, MS: hep-ph/0703242 (PRD)

\rightarrow more on Wednesday

main features:

- handle on gluon fragmentation
- flavor separation
- uncertainties via Lagrange multipl.
- describes all current data

\blacksquare can one assume that $\Delta\Sigma$ is known?

NO, it is misleading to extract only Δg w/o refitting the quarks:

\blacksquare can I use MCs to extract $\triangle g$?

 Δg extraction through signal/background separation based on MC

$$\text{e.g., lp} \rightarrow \mathsf{HX} \quad A_{LL} = \underbrace{\frac{\sum \Delta f \otimes d\Delta \widehat{\sigma} \otimes D_c}{\sum f \otimes d\widehat{\sigma} \otimes D_c}}_{\text{"fractions" from MC}} \underbrace{\frac{\sigma_{\gamma g}}{\sigma_{tot}} \frac{\Delta g}{g} \frac{\Delta \widehat{\sigma}_{\gamma g}}{\widehat{\sigma}_{\gamma g}}}_{\text{"fractions" from MC}} + A_{LL}^{\text{backgr.}}$$

MC crucial to model experiment but cannot replace a full global analysis:

- requires kind of "mean-value" theorem as $\frac{\Delta g \otimes d\Delta \hat{\sigma} \otimes D_c}{g \otimes d\hat{\sigma} \otimes D_c} \neq \frac{\sigma_{\gamma g}}{\sigma_{tot}} \frac{\Delta g}{g} \frac{\Delta \hat{\sigma}_{\gamma g}}{\hat{\sigma}_{\gamma g}}$ (also note that $\langle \hat{A}_{\gamma g}(x) \rangle \neq \hat{A}_{\gamma g}(\langle x \rangle)$)
- MC hadronization not compatible with collinear pQCD which defines pdfs
- MC neither LO nor NLO (parton showers, ...)

in general, expect: $\Delta g(MC) \neq \Delta g(NLO pQCD analysis)$

pprox 20 years of experience in analyzing unpolarized data:

DFLM, ..., GRV, MT, MRS, ..., MSTW, CTEQ, ...

learning about nucleon structure requires a global QCD analysis

even more true for the spin structure due to lack of "HERA-like" DIS data

but current data are not yet sufficient, e.g.:

- quark & anti-quark flavor separation → W-physics @ 500 GeV
- gluon polarization (sign, small x, ...)

some future avenues for Δg at RHIC

Δg : where do we stand now?

```
\int \Delta g \ dx thought to be large: 2-4 \hbar
                                                                 Altarelli, Ross; ...
          in the aftermath of the EMC result
          due to axial anomaly (very controversial Jaffe; Ji; ...)
          "dark ages": several model calculations:
           '95 Brodsky, Burkardt, Schmidt: \Delta g(1GeV) \approx 0.5 \hbar (hel. retention, color coh.)
           '97 Balitsky, Ji: J_a(1GeV) \approx 0.25; expect \Delta g < 0.5 \hbar (QCD sum rules)
           '98 Barone, Calarco, Drago: \Delta g = 0.24 \hbar (quark model)
           '00 Lee, Min, Park, Rho, Vento: \Delta g \approx 0.2 \hbar (bag model)
2000
          around/after 2000: several DIS fits: \Delta g largely unconstrained
                                                                        GRSV. BB. AAC. ...
```

now

time

 $\Delta g(x)$ is not large and positive at $x \simeq 0.05 \div 0.2$; still a long way for full moment $\int \Delta g \ dx$ but anomaly scenario (2-4 units of \hbar) excluded

PHENIX, STAR, HERMES, COMPASS

RHIC/RHIC-II 500 GeV collisions (smaller x), more luminosity (rare probes)

prompt photons: rare, but clear probe of sign through

heavy flavors: mass allows (?) pQCD at small $p_T \rightarrow probes smaller x$

particle correlations: better control of kinematics = x-range and sign

strongly asym. kinematics: $x_1 >> x_2$

 \rightarrow qg-scattering $q(x_1)$ $g(x_2)$ important

NLO 2-hadrons just completed & pheno. studies under way:
Jäger, Owens, MS, Vogelsang 31

heavy flavors (prospects for near future)

"quick & dirty study"
J. Riedl, MS

unpolarized "benchmark" for 2-hadrons

 \rightarrow confidence in A_{LL} measurements & interpretation

- never measured at collider energies
 - → test of QCD factorization
- doable both at STAR and PHENIX
- NLO corrections & scale dependence are substantial

\rightarrow sensitivity to Δg (sign!)

new kid on the block: 62.4 GeV data

- explores larger x values
- pQCD at the edge?
 - \rightarrow testing ground for resummations
- qg scattering more relevant \rightarrow sign!

could be interesting/important to collect more data at 62 GeV

conclusions

we have just explored the tip of the iceberg

many avenues for further important measurements and theoretical developments

